Ayns maddaght, ta ny earrooyn Fibonacci ny straih Fibonacci çheet er earrooyn yn 'traih shoh:

Leacan jeant jeh kerrinyn, as ya lhiurid ny çheuyn oc rere ny h-earrooyn Fibonacci
Caslagh Fibonacci jeant liorish kerrinyn ayns leacan Fibonacci, as cruillagyn jeant eddyr ny corneilyn oc. Ta'n fer shoh jeant jeh kerrinyn 1, 1, 2, 3, 5, 8, 13, 21, as 34 er lhiurid.

Rere meenaghey, she 0 as 1 ad y chied daa earroo Fibonacci, as ta dagh earroo ny yei ny sym y daa roish. Ny keayrtyn, t'ad faagail magh y 0 as goaill toshiaght lesh 1, 1.

Rere maddaght, ta'n straih Fn dy earrooyn Fibonacci rere'n cochiangley aahaghyrtagh

as ny earrooyn toshee heese echey

Ta ennym yn 'traih çheet er Leonardo jeh Pisa. V'ad cur Fibonacci er (girraghey er son filius Bonaccio, "mac Vonaccio"). Ren y lioar 1202 echey, Liber Abaci, cur stiagh y striah dys maddaght ny h-Oarpey Heear. V'eh mie er fys ayns maddaght Injinagh hannah.[1][2]

Imraaghyn

reagh
  1. Parmanand Singh (1986). "Acharya Hemachandra and the (so called) Fibonacci Numbers". Math. Ed. Siwan 20 (1): 28-30. ISSN 0047-6269. 
  2. Parmanand Singh (1985). "The So-called Fibonacci numbers in ancient and medieval India". Historia Mathematica 12 (3): 229–44.